
Estimating the Probability of Project Completion
by SIM_DEL Estimator

Dr. P.K.Suri, Pallavi Ranjan

Haryana College of Technology and Management,
Kaithal, Haryana, India

Abstract— Software has a far ranging nature and sometimes it is
difficult to predict the cost. So, it was demanded to develop some
useful models that predict the accurate cost, schedule and quality of a
software product. There is a great need to accurately predict the cost
by selecting the appropriate estimation method. Expert Based
Judgment is quite successful. Wideband Delphi estimation comes
under this category. This paper is aimed at implementing a simulator
in C language which estimates the probability of a successful project
completion. Feeding PERT (Project Evaluation and Review
Technique) onto the WBD (Wideband Delphi Estimation) Process
gives the required probability. Input to the process i.e. optimistic,
pessimistic and most likely time for each module is given by the
experts based on their highly specific knowledge.
Keywords— WBD, PERT, Simulator, Estimation, Accuracy,
Optimistic, Pessimistic, Expert

I. INTRODUCTION
Software development effort estimation is the process of
predicting the most realistic use of effort required to
develop or maintain software based on incomplete,
uncertain or noisy input. It is the process of forecasting or
approximating the time and cost of completing project
deliverables. Effort estimation has been a critical task for a
software project that has attracted a considerable amount of
research within software engineering, but no approach has
provided consent to produce accurate effort estimates for
successful software projects [38, 11]. Software has a far
ranging nature and due to lack of powerful, satisfactory
techniques, software engineering practitioners continuously
fail to accurately predict the cost. So there was a great need
to develop useful models that explain the software
development life cycle and predict the accurate cost,
schedule and quality of a software product. Models can be
classified into two categories- algorithmic and non-
algorithmic. Both of them have pros and cons. A key factor
in selecting the estimation model is accuracy of the
estimates, as cost and schedule overruns are not uncommon
on large scale software.
A. Need of Accurate Estimation
 It is necessary for defining the resources needed to

produce, verify and validate the software products for
managing software development activities.

 It can help to classify and prioritize development
projects with respect to an overall business plan.

 It can be used to determine what resources to commit
to the project and how well these resources will be
used.

 It can be used to assess the impact of changes and
support re-planning.

 Projects can be easier to manage and control when
resources are better matched to real needs.

 Customers expect actual development costs to be in
line with estimated costs.

Fig.1 Cost Estimation Process

B. Problems with Poor Estimation
1. Under estimation: In case of underestimate, the

software organization will make a loss and also delay
the delivery of software. The delay can cause disruption
to the user organization and also invites penalty on the
software organization.

2. Estimation occurs at wrong time: Most estimates are
made at the beginning of a project, before requirements
are defined and thus before the problem is understood.
Every software is unique, and it is impossible to
estimate software accurately, when it’s being done for
the first time.

3. Estimated time is always used: Most programmers
also tend to spend the allocated time on a task. If
something is estimated to take two days, the
programmer makes sure that it takes two days. Even if
he finishes early, he will tune and polish his solution, or
just slack off, until the allocated time is spent. This
creates a situation, where nothing gets done faster than
the estimates, but some things will take longer than the
estimates.

4. Business relies on estimations too heavily: Some
companies the whole sales and marketing departments
rely so heavily on estimations that any kind of delay
will cause major problems for the company.

5. Wrong people do the estimates: Estimates should be
made by the programmers themselves. Sometimes team
leads can do the estimates for them, but the game is lost,
if someone with an MBA does the estimates. Run and
don’t look back, if this happens in your company.

6. Measurement problems: Estimating the size of the
measure (e.g. how many function points), estimating the
total number of programmer months that have elapsed,
estimating contractor productivity (e.g. documentation
team) and incorporating this estimate in overall estimate.

P.K.Suri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4938-4945

4938

II. SOFTWARE ESTIMATION TEHNIQUES
Significant Research was carried out by Boehm in software
cost modelling which began with the extensive 1965 study
of the 105 attributes of 169 software project. This led to
some useful partial models in the late 1960s and early
1970s. Although much work was carried on developing
models of cost estimation, all of them were in same
dilemma: “It was very difficult to predict the accurate cost
of software development as software grew in size and
importance it also grew in complexity.” The fast changing
nature of software development has made it very difficult to
develop parametric models that yield high accuracy for
software development in all domains. Software
development costs continue to increase and practitioners
continually express their concern over their ability to
predict accurately the costs involved. This was a major
pitfall experienced. Development of useful models that
constructively explain the development life-cycle and
accurately predict the cost of developing a software product
was a major objective. Hence, many Software estimation
models have been evolved.

Fig 2 Software Estimation Techniques

A. Selecting an estimation method
 Formal software development effort estimation model

have been around for more than 40 years. They are
often used in many software engineering books, user
friendly tools. In spite of this massive effort and
promotion, formal estimation models aren’t in much
use. 10 out of the 16 studies reviewed in “Estimation of
Software Development Work Effort: Evidence on
Expert Judgment and Formal Models” [11] report that
using judgment based effort estimation methods led to
more accurate effort estimates than using sophisticated
formal models.

 Second, little work has been done on judgment based
effort improvement process. Most of the software
industry use judgment based estimation methods.

 Third, an important reason for the rejection of formal
models might be that experts’ highly specific
knowledge—for example, about the developers who
are supposed to do the work—frequently can’t be
included properly as model input. It’s understandably
difficult to trust an estimation method unable to make
use of strongly relevant information. It’s hardly
possible to unite highly specific knowledge with the

need to establish general relationships in formal
models; that is, this limitation isn’t a question of
improved models. In short, there are very good reasons
to claim that future estimation process improvement
and research initiatives should aim at better judgment-
based effort estimation processes and not at better
formal models.

 Fourth, All meaningful estimation models require
judgment to produce the input to the models. This
might include judgment of complexity, team skill, and
the customers’ requirements for the system. This means
that software companies benefit from a stronger focus
on better judgment-based processes—even when they
choose to apply estimation models, for example, in
combination with expert judgment.

 Fifth, Accuracy of judgment based effort estimation is
not up to the mark i.e. far from perfect. For example,
they frequently involve a high degree of wishful
thinking and inconsistency. The surprising observation
is therefore that estimation models haven’t managed to
produce more accurate effort estimates. This
observation is even more surprising when you consider
that models seem to outperform expert judgment in
most other disciplines [21].

 Finally, according to Magne [11], Judgment-based
estimates tend to have a higher degree of wishful
thinking. A major advantage of a parametric model is
that it doesn’t modify its estimates when customers,
managers, or marketers apply pressure. The only way
you can get a parametric model to reduce its estimates
is by going on record to make a visible change in the
project’s estimated size or in its productivity-driver
parameter ratings. Thus, using a calibrated parametric
model enables negotiation of the price of a software
development contract to be driven by objective
adjustment of project size or productivity-driver
parameters, rather than by a contest of wills between
self-described experts.

 For known projects and projects parts, we should use
expert judgment method or analogy method if the
similarities of them can be got, since it is fast and under
this circumstance, reliable.

 Using multiple people to estimate is better than one
person, it increases the chances of identifying issues
that some people may miss, as group sizes increase, the
potential for communication failures increases at a
faster rate.

III. PROJECT ESTIMATION: WIDEBAND DELPHI (WBD)
The Delphi method was developed in the 1950s by RAND
Corporation in Santa Monica, California. It consists of a
process with two or more rounds and assessments of first
round are altered by the second round or if experts want,
they may stick to the previous results. The survey is done
using a questionnaire. It is mostly used for long-range
forecasting (20-30 years), because the only information
available is expert’s knowledge. Delphi studies are mainly
applied in science, technology and education contexts, but
one can think of different occasions. Delphi is a process
with preparation, a survey in two or more rounds and
application (implementation) when the survey is completed.

P.K.Suri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4938-4945

4939

A. History
Delphi method was developed in 1950’s by the RAND
Corporation Santa Monica, California, in Operations
research. [61] It came from Delphi oracle, “Delphi” is a
name which was intentionally coined by Kaplan, an
associate professor of philosophy at the UCLA working for
the RAND Corporation in a research effort directed at
improving the use of expert pre-dictions in Policy-making.
The foundation of the temple at Delphi and its oracle took
place before recorded history. Greeks and some other
people came to Delphi to consult the prophetess, who was
known as Pythia. Her words were taken to reveal the rules
of god. Pythia’s function was to tell the divine purpose in a
normative way in order to shape coming events. One should
consider that the Delphi monastery was one of the very few
spots on the earth where knowledge was accumulated,
ordered and preserved. The information came in from the
ambassadors through their queries and the answers were
written down on metal or stone plates, several of them
found by archaeologists. The temple was the locus of
knowledge, or, if we put it more mundanely, the Delphic
oracle was probably the largest database of the ancient
world. The priests could read and write; who else could do
so in Greece? If due allowance is made for these circum-
stances, modern psychology will find no special difficulties
in accounting for the operations of the Pythia and of the
priests interpreting her utterances. Knowledge was intended
to be used and disseminated to make the world better.
B. Definition
 'Standard-Delphi-Method' in the following way: 'It is a
survey which is steered by a monitor group, comprises
several rounds of a group of experts, who are anonymous
among each other and for whose subjective-intuitive
prognoses a consensus is aimed at. After each survey round,
a standard feedback about the statistical group judgment
calculated from median and quartiles of single prognoses is
given and if possible, the arguments and counterarguments
of the extreme answers are fed back...' [59]
C. The Process
Figure 3 shows the activities undertaken when performing
WBD for a project.
 Initially, all participants must understand the

objectives of the technique.
 During the estimation process each individual will

use a standard form to record their estimation figures
and any notes deemed relevant. The estimation
session will continue until each individual has
produced estimation figures, at which point
facilitator retrieves the figures.

 The facilitator assesses the estimates and prepares a
presentation including all the estimation figures, task
list based upon system requirements, any identified
factors affecting the task estimation process. A
simple graph or table should be used to capture these
figures.

 If convergence has not been achieved, then facilitator
will present the estimates and task list to the
projected team. All estimators recognize the valid
tasks that have been missed and any other factors
that are necessary to be taken.

Fig. 3 Wideband Delphi Estimation Process Flow

The estimates plotted may look something like the
following:

Fig. 4 Estimates after different rounds

You can apply one or both of two established methods; the
three point method, also known as weighted average, and
the nominal or Delphi method. In the three point method,
you survey your experts about a task and ask them to come
up with the best case duration, the worst case duration, and
the most likely. Average them all out and apply them to the
formula:

Work effort = [(Best Case) + (Worst Case) + (Most Likely x 4)] / 6

D. WBD Strengths
 It is a simple technique not requiring estimation experts.
 Applicable to original projects where no previous

metrics exist
 The process is an inclusive approach using all the

project team to perform an active role in estimation
 Estimation figures are produced by team consensus

through estimation iteration sessions. More likely to
mitigate impact of large individual errors

 An expert judgment driven technique using developers
to estimate. They are most likely to understand
technical complexity and challenges when considering
the requirements in context

E. WBD Weaknesses
 Must have strong facilitator for estimation sessions

to remain unbiased
 Estimates are no better than the abilities of the

participants

P.K.Suri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4938-4945

4940

IV. PERT
(Project) Evaluation and Review Technique (PERT) is a
project management tool used to schedule, organize, and
coordinate tasks within a project. It is basically a method to
analyze the tasks involved in completing a given project,
especially the time needed to complete each task, and to
identify the minimum time needed to complete the total
project. In the network analysis, it is implicitly assumed
that the time values are deterministic or variations in time
are insignificant. This assumption is valid in regular jobs
such as maintenance of a machine etc., construction of
building or road, planning for production, as these are done
from time to time and various activities could be timed very
well. However, in research projects or design of a gear box
of a new machine, various activities are based on judgment.
A reliable time estimate is difficult to get because the
technology is changing rapidly. Time values are subject to
chance variations.
A. Objective
The main objective of PERT is to find out the completion
for a particular event within specified date. If yes, what are
the chances of completing a job? The PERT approach
takes into account the uncertainties. In this approach, three
time values are associated with each activity: the optimistic
value, the pessimistic value, and the most likely value.
These three time values provide a measure of uncertainty
associated with that activity.
B. Description
PERT planning involves the following steps that are
described below:
1. Identify the specific activities and milestones. The
activities are the tasks required to complete a project. The
milestones are the events marking the beginning and the
end of one or more activities. It is helpful to list the tasks in
a table that in later steps can be expanded to include
information on sequence and duration.
2. Determine the proper sequence of the activities. This
step may be combined with the activity identification step
since the activity sequence is evident for some tasks. Other
tasks may require more analysis to determine the exact
order in which they must be performed.
3. Construct a network diagram. Using the activity
sequence information, a network diagram can be drawn
showing the sequence of the serial and parallel activities.
Each activity represents a node in the network, and the
arrows represent the relation between activities. Software
packages simplify this step by automatically converting
tabular activity information into a network diagram.
4. Estimate the time required for each activity. Weeks
are a commonly used unit of time for activity completion,
but any consistent unit of time can be used. A
distinguishing feature of PERT is its ability to deal with
uncertainty in activity completion time. For each activity,
the model usually includes three time estimates:
 Optimistic time – generally the shortest time in which

the activity can be completed. It is common practice to
specify optimistic time to be three standards deviations
from the mean so that there is a approximately a 1%
chance that the activity will be completed within the
optimistic time. This is denoted by t (o).

 Most likely time – the completion time having the
highest probability. Note that this time is different from
the expected time. It is denoted by t (m).

 Pessimistic time – the longest time that an activity
might require if everything goes wrong. This is denoted
by t (p).

PERT assumes a beta probability distribution for the time
estimates. For a beta distribution, the expected time for
each activity can be approximated using the following
weighted average:
Expected time = (Optimistic + 4 * Most likely + Pessimistic) / 6

Fig. 4 Time Distribution Curve

This expected time may be displayed on the network
diagram. To calculate the variance for each activity
completion time, if three standard deviation times were
selected for the optimistic and pessimistic times, then there
are six standard deviations between them, so the variance is
given by:

 2= [(Pessimistic - Optimistic) / 6]2�
5. Determine the critical path. The critical path is

determined by adding the times for the activities in each
sequence and determining the longest path in the project.
The critical path determines the total calendar time
required for the project.

6. Update the PERT chart as the project progresses.
Make adjustments in the PERT chart as the project
progresses. As the project unfolds, the estimated times
can be replaced with actual times. In cases where there
are delays, additional resources may be needed to stay
on schedule and the PERT chart may be modified to
reflect the new situation.

The expected duration of the project and variance can be
known easily by using the formulas. If the exact probability
distribution of the path is known, it would have been easy
to find out the probability of completing the project in a
given time. Since the variance of the path is known, the
CHEBYCHEV INEQUALITY could be used to get an
estimate of probability for as given duration:

Di=

Prob [project duration x days] =?
Prob [Z<= Di] = q [can be checked by Normal
Distribution Table]
Hence the probability of finishing the job in less than or
equal to x days is q. The physical meaning of this statement
is: If the job is done hundred times under same conditions,
then there will be q occasions when this job will take x days
or less to complete it.

P.K.Suri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4938-4945

4941

C. Benefits
PERT is useful because it provides the following
information:

 Expected project completion time
 Probability of completion before a specified date
 The critical path activities that directly impact the

completion time
 Activity start and end date.

D. Prerequisites
 Personnel should already have a good

understanding of formal project management
terminology, tools, and techniques

 PERT form template of equivalent tool (e.g.
software)

 Choose the most appropriate scheduling method
Select and organize a team to perform project tasks.
E. Limitations

 The activity time estimates are somewhat
subjective and depend on judgment. In cases
where there is little experience in performing an
activity, the numbers may be only a guess. In other
cases, if the person or group performing the
activity estimates the time there may be bias in the
estimate.

 Even if the activity times are well-estimated,
PERT assumes a beta distribution for these time
estimates, but the actual distribution may be
different.

 Even if the beta distribution assumption holds,
PERT assumes that the probability distribution of
the project completion time is the same as that of
the critical path. Because other paths can become
the critical path if their associated activities are
delayed, PERT consistently underestimates the
expected project completion time.

 The underestimation of the project completion
time due to alternate paths becoming critical is

perhaps the most serious of these issues. To
overcome this limitation, Monte Carlo simulations
can be performed on the network to eliminate this
optimistic bias in the expected project completion
time.

V. PROPOSED WORK

Estimating the probability of project completion by
design of “SIM_DEL” Simulator in “C”

A. Algorithm
1. Identify the Expert Panel and arrange the session.

Goto Step 2
2. KICKOFF MEETING:

 Discuss Core Responsibilities, WBS and
Project Risks.

 Discuss the available resources for project.
 Provide estimation checklist to experts and

provide opportunity to discuss it.
 Goto Step 3

3. Experts give us initial estimates by judging the
information. Goto Step4

4. DELPHI ESTIMATION MEETING:
 Each expert gives us the optimistic t(o),

pessimistic t(p) and most likely time t(m).
 Average estimate is calculated and

communicated to the Panel
 Differences are observed.

o If the difference is major:
{Expert with the widest deviation from mean

is asked to explain how he came across
this}. Go to Step 4 again

o Else
{Go to Step 5}

Table 1 Normal Distribution Table

P.K.Suri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4938-4945

4942

5. SIM_DEL ESTIMATOR
 Expected Time t(e) and Standard Deviation

is calculated

t (e) =

 Determine the Early Start Time
o Initial Event is supposed to occur at time

equal to zero i.e. E1=0
o Next event is supposed to occur when

preceding activities are completed. The
earliest time Ej for node j is given by Ej =

i [Ei + Dij] where I is a collection of

nodes which precede node j.

o Repeat this step for next eligible activity
until the end node is reached.

 Determine Critical Path
o It determines the sequence of critical

activities. It is the longest path from starting
event to ending event.

 Estimate the Probability of Project completion

Di=

Prob [project duration x days] =?
Prob [Z<= Di] = q [can be checked by Normal
Distribution Table]

B. Flowchart

P.K.Suri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4938-4945

4943

VI. RESULTS

VII. CONCLUSION AND FUTURE WORK
If this project is performed 100 times under the same
conditions, there will be 30 chances when this job would
take 41.5 weeks or less to complete it. As an alternative to
the PERT technique and to provide a greater degree of
flexibility in specifying likely activity durations, we can use
MONTE- CARLO SIMULATION techniques to evaluate
the risks of not achieving deadlines. It involves calculating
the activity completion times, each time selecting estimated
activity times randomly (RANDOM No.) From a set of
estimates.

 Scheduled time of completing the event is 41.5
weeks. Therefore the distance in standard
deviations:

 D(i) = [41.5 – 42.8] / √6.12 = -0.52
 P[Z>= -0.52] = 1-P[Z<=0.52]=

 = 1- 0.70 = 0.30

ACKNOWLEDGMENT
Sincere Thanks to HCTM Technical Campus Management
Kaithal- 136027, Haryana, India for their constant
encouragement.

REFERENCES
[1] Albrecht, A.J., October 1979. “Measuring Application Development

Productivity”, Proc. Joint SHARE, GUIDE, and IBM Application
Development Symp.

[2] Albrecht, A.J., AD/M Productivity Measurement and Estimate
Validation, IBM Corporate Information Systems, IBM Corp.,
Purchase, New York.

[3] Andrew Stellman & Jennifer Greene Applied Software Project
Management Estimation, http://www.stellman-greene.com

[4] Armstrong, J. S., W. B. Denniston, and M.M. Gordon, "The Use of
the Decomposition Principle in Making Judgments." Organizational
Behaviora and Human Performance, 14 (1975), 257-263.

[5] J. D. Aron, Estimating Resource for Large Programming Systems,
NATO Science Committee, Rome, Italy, October 1969.

[6] Banker, R. D., H. Chang, et al. (1994). "Evidence on economies of
scale in software development." Information and Software
Technology 36(5): 275-282.

[7] Barbara A. Kitchenham, Tore Dybå, Magne Jørgensen. 2004. IEEE
Proceedings of the 26th International Conference on Software
Engineering (ICSE’04)

[8] Barbara Kitchenham, Emilia Mendes. 2009. Why Comparative
Effort Prediction Studies may be Invalid © ACM 2009 ISBN: 978-
1-60558-634-2.

[9] Bergeron, F. and J. Y. St-Arnaud (1992). "Estimation of information
systems development efforts: a pilot study." Information and
Management 22(4): 239-254.

[10] Boehm, B., C. Abts and S. Chulani, “Software development cost
estimation approaches – A survey”, Annals of Software Engineering,
10, pp. 177-205, 2000.

[11] Boehm, 1981 “Software Engineering Economics”, Prentice Hall.
[12] Boehm B.W. and W.Royce. Nov 1988. “Ada COCOMO and Ada

Process Model”, Proc. 3rd International COCOMO Users Meeting,
Software Engineering Institute, Pittsburgh, Nov 1987, plus
refinements presented at the Fourth International COCOMO Users
Group Meeting.

[13] Boehm, B. W. and P. N. Papaccio, 1988. Understanding and
controlling software costs. IEEE Transactions on Software
Engineering 14(10): 1462-1477.

[14] Boehm, B.W., B. Clark, E. Horowitz., C. Westland, R. Madachy,
and R. Selby, 1994 “Cost Models for Future Software Lifecycle
Processes: COCOMO 2.0,” Annals of Software Engineering, Vol. 1,
1995, pp. 57-94. An earlier description was presented in the tutorial

P.K.Suri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4938-4945

4944

“COCOMO, Ada COCOMO and COCOMO 2.9” by Barry Boehm
in the proc. 9th Int’l COCOMO Estimation Meeting.

[15] F.Brooks, 1975. The Mythical Man-Month; Essays on Software
Engineering. Addison-Wesley, Reading, Massachusetts.

[16] Capers Jones, Chief Scientist Emeritus Software Productivity
Research LLC. Version 5 – February 27, 2005. How Software
Estimation Tools Work.

[17] Chatzoglou, P. D. and L. A. Macaulay (1998). "A rule-based
approach to developing software development prediction models."
Automated Software Engineering 5(2): 211-243.

[18] Cockcroft, S. (1996). "Estimating CASE development size from
outline specifications." Information and Software Technology 38(6):
391-399.

[19] Conte S.D., H.E. Dunsmore, and V.Y. Shen, 1986. Software
Engineering Metrics and Models, Benjamin Cummings, Menlo Park,
Calif.

[20] 9. R.M. Dawes, D. Faust, and P.E. Meehl, “Clinical versus
Actuarial Judgment,” Science, vol. 243, no. 4899, 1989, pp. 1668–
1674

[21] DeMarco, T., Controlling Software Projects: A 4anagement,
Measurement, and Estimation. Yourdon Press, New York, 1982.

[22] DeMarco, T., 1982, Controlling Software Projects, Yourdon Press,
Englewood Cliffs, N.J.

[23] M. V. Deshpande, S. G. Bhirud. August 2010. Analysis of
Combining Software Estimation Techniques. International Journal
of Computer Applications (0975 – 8887)

[24] Dolado, J. J. (2000). "A validation of the component-based method
for software size estimation." IEEE Transactions on Software
Engineering 26(10): 1006-1021

[25] Software Effort and Schedule Estimation, Faghih Farshad,
University of
Calgary,1997,http://www.enel.ucalgary.ca/People/Smith/619.94/pre
v689/1997.94/reports/farshad.htm

[26] Fredrick P.Brooks, 1975. The Mythical Man Month, Addison
Wesley.

[27] Allan J. Alberecht and John E. Gaffhey, November 1983, Software
Function, Source Lines of Code and Development Effort Prediction :
A software Science Validation . IEEE transactions on Software
Engineering.

[28] Gaffney, J.E., Jr., 1996. “Software Cost Estimation using Simplified
Function Points, “ Proc. 8th Ann. Software Technology Conf.

[29] Gray, A. and S. MacDonell (1996), “A Comparison of Techniques
for Developing Predictive Models of Software Metrics,”
Information and Software Technology 39, 1997.

[30] Halstead, M.H. 1977. Elements of Software Science, Elsevier,
NewYork.

[31] Ali Idri, Alain Abran, Taghi M. Khosgoftaar. 2001. Fuzzy Analogy-
A New Approach for Software Cost Estimation. International
Workshop on Software Measurement (IWSM’01).

[32] Jensen, R.W., 1984, A Comparison of the Jensen and COCOMO
Estimation Models,” Proc. Int’l Soc. Of Parametric Analysts, PO
Box 6402, Chesterfield, MO 63006-6402, pp. 96-106.

[33] Jensen, R.W., 1996. “Management Impact on Software Cost and
Schedule,” Crosstalk, pp. 6-10.

[34] Jones, C., 1986. The SPR Feature Point Method, Software
Productivity Research, Inc., Software Productivity Research Inc.,
New England Executive Park,Burlington.

[35] 2. M. Jørgensen, “Estimation of Software Development Work Effort:
Evidence on Expert Judgment and Formal Models,” Int’l J.
Forecasting, vol. 23, no. 3, 2007, pp. 449–462.

[36] Jovan Popović1 and Dragan Bojić1. 2012. A Comparative
Evaluation of Effort Estimation Methods in the Software Life Cycle.
ComSIS Vol. 9, No. 1, January 2012.

[37] Kemerer, C.F., “An empirical validation of software cost estimation
models”, Communications of the ACM, 30:5, 1987.

[38] Software Cost Estimation: Metrics and Models, Johnson, Kim,
University of Calgary, 1998.

[39] N.R. Sanders and L.P. Ritzman, “On Knowing When to Switch
from Quantitative to Judgemental Forecasts,” Int’l J. Operations &
Production Management, vol. 11, no. 6, 1991, pp. 27–37.

[40] The Comparison of the Software Cost Estimating Methods,
University of Calgary, 1997.

[41] Magne Jørgensen, A Review of Studies on Expert Estimation of
Software Development Effort, March 2002.

[42] Magne Jorgensen and Barry Boehm Software Development Effort
Estimation: Formal Models or Expert Judgment? Published by the
IEEE Computer Society 074 0-7459/09/$25.00©2009IEEE

[43] Magne Jørgensen. May 2007 Forecasting of Software Development
Work Effort: Evidence on Expert Judgment and Formal Model.

[44] Minkiewicz, A. and A. DeMarco, 1995. The PRICE Software
Model, Lockheed Martin PRICE Systems, Ste. 200, 700 East Gate
Dr., Mt. Laurel, NJ 08054.

[45] Software Metrics: A Guide to Planning, Analysis, and Application,
Pandian, C. Ravindranath, Auerback Publishers, 2003

[46] Park, R.E., 1988. The Central Equations of the PRICE Software
Cost Model, Lockheed Martin PRICE Systems, Ste.200, 700 East
Gate Dr., Mt. Laurel, NJ 08054.

[47] Parvinder S. Sandhu, Porush Bassi, and Amanpreet Singh Brar.
2008. Software Effort Estimation Using Soft Computing
Techniques. World Academy of Science, Engineering and
Technology 46 2008.

[48] Putnam, Lawrence H.; Ware Myers (2003). Five core metrics : the
intelligence behind successful software management. Dorset House
Publishing. ISBN 0-932633-55-2.

[49] Putnam, Lawrence H. (1978). "A General Empirical Solution to the
Macro Software Sizing and Estimating Problem".IEEE transactions
on Software Engineering, VOL. SE-4, NO. 4, pp 345-361.

[50] Richard D. Stuzke, May 1996. Software Estimating Technology: A
Survey. Crosstalk.

[51] Samaresh Mishra1, Kabita Hazra2, and Rajib Mall3. October 2011.
A Survey of Metrics for Software Development Effort Estimation.
International Journal of Research and Reviews in Computer Science
(IJRRCS)

[52] M. Jørgensen and M. Shepperd, “A Systematic Review of Software
Development Cost Estimation Studies,” IEEE Trans. Software Eng.,
vol. 33, no. 1, 2007, pp. 33–53.

[53] Stein Grimstad*, Magne Jørgensen, Kjetil Moløkken-Østvold. 13
June 2005. Software effort estimation terminology: The tower of
Babel. Information and Software Technology 48 (2006) 302–310

[54] Symons, C., 1991. Software Sizing and Estimating: Mark II FPA,
Wiley and Sons, New York.

[55] Robert C. Tausworthe, 1981. Deep Space Network Estimation
Model, Jet Propulsion Report.

[56] Vahid Khatibi, Dayang N. A. Jawawi. 2010. Software Cost
Estimation Methods: A Review. Journal of Emerging Trends in
Computing and Information Science.

[57] Whitmire, S.A., Apr. 1995, 3D Function Points: Scientific and Real
Time Extensions to Function Points, Boeing Airplane Company
report BCS-G3252, dated 1992. It was published in the Proc. 1992
Pacific Northwest Quality Conference. A more accessible reference
by the same author is “An introduction to 3D Function Points,”
Software Development, p. 43.

[58] Wechsler, Wolfgang (1978): Delphi-Methode, Gestaltung und
Potential für betriebliche Prognoseprozesse, Schriftenreihe
Wirtschaftswissenschaftliche Forschung und Entwicklung,
München.

[59] Wittig, G (1995), “Estimating Software Development Effort with
Connectionist Models,” Working Paper Series 33/95, Monash
University.

[60] Woudenberg, F. (1991): An Evaluation of Delphi, in: Technological
Forecasting and Social Change, vol. 40, pp. 131 – 150.

P.K.Suri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4938-4945

4945

